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Abstract related  mission  operations  effort by 80% and increased 
Local  search  has  been  proposed as a means of responding 
to changes in problem  context  requiring  replanning. 
Iterative  repair  and  iterative  improvement  have.  desirable 
properties  of  preference  for plan stability  (e.g.,  non- 
disruption,  minimizing  change),  and  have  performed well 
in a number of practical  applications.  However,  there has 
been little  real  empirical  evidence  to  support  this  case. 
This  paper  focuses  on  the  use of local  search to support a 
continuous  planning  process  (e.g.,  continuously  replanning 
to  account  for  problem  changes) as is  appropriate  for 
autonomous  spacecraft  control.  We  describe  results  from 
ongoing  empirical  tests  using  the  CASPER  system  to 
evaluate  the  effectiveness of local  search  to  replanning 
using  a  number of spacecraft  scenario  simulations 
including  landed  operations on a comet and rover 
operations.' 

Introduction 
In recent  years  Galileo,  Clementine,  Mars  Pathfinder, 
Lunar  Prospector,  and  Cassini  have all demonstrated a new 
range  of  robotic  missions  to  explore  our solar system. 
However,  complex  missions still  require  large  teams of 
highly  knowledgeable  personnel  working  around  the  clock 
to  generate  and  validate  spacecraft  command  sequences. 
Increasing  knowledge of our  Earth,  our  planetary  system, 
and our  universe  challenges  NASA  to fly large  numbers of 
ambitious  missions,  while  fiscal  realities  require  doing so 
with  budgets  far  smaller  than in the past.  In  this  climate, 
the  automation  of  spacecraft  commanding  becomes an 
endeavor  of  crucial  importance. 

Automated  planning  is a key enabling  technology  for 
autonomous  spacecraft.  Recent  experiences  indicate  the 
promise  of  planning  and  scheduling  technology  for  space 
operations.  Use of the  DATA.-CHP.WR arltornted 
planning  and  scheduling  system  (DCAPS)  to  command  the 
DATA-CHASER  shuttle  payload reduced commanding- 

' This work was perfonned by the  Jet  Propulsion  Laboratory,  under 
contract  with  the  National  Aeronautics  and  Space  Administration. 

science  return by 40% over  manually  generated  sequences 
(Chien  et al. 1999).  This  increase was possible  because 
short  turn-around  times  (approximately 6 hours)  imposed 
by operations  constraints  did  not  allow  for  lengthy,  manual 
optimization. And the Remote  Agent  Experiment (ARC, 
JPL et al. 1999)  demonstrated  the  feasibility of flying AI 
software  (including a planner) to control a spacecraft. 

Local  iterative  algorithms  have been successfully 
applied  to  planning and scheduling  (Minton  et  al.  1994, 
Zweben  et al. 1994,  Chien et al. 1999,  Chien  et al. 20004 
for a wide range of space  applications.  Local  iterative 
repair has  been proposed as a means of providing a fast 
replanning  capability to enable  response  to  environmental 
changes  (Smith,  1994  Chien  et  al.  2000b).  This  paper 
describes an empirical  evaluation of the  effectiveness of 
local  search in such a replanning  context. 

The remainder of this  paper is organized as follows. 
First, we briefly  describe  our  approach  to  local  iterative 
repair.  Next we describe how it is  applied in a replanning 
context.  We then describe a Comet  Nucleus  Sample 
Return (CNSR)  scenario  and  simulation  and  empirical  tests 
evaluating  the  effectiveness of local  search in finding 
solutions.  Finally, we describe  future  work,  related  work 
and conclusions. 

Plan  Conflicts and Repair 
We  now describe  the  overall  approach  to  iterative  repair 
planning and scheduling in the ASPEN  system  (Chien  et 
al. 2000b,  Rabideau  et al. 1999). The  ASPEN  planning 
and scheduling  system is able to represent a wide  range of 
constraints  including: 

Finite  enumeration  state  requirements  and  changers 

Depletable  (e.g.  fuel) and non-depletable  (e.g.,  20W 

0 Task  decompositions  (e.g.,  Hierarchical  Task 
Networks); 
Complex  functional  relationships  between  activity 
parameters (e.g.,  downlink  time is datdrate + 
startup); and 

(e.g.,  camera  ON, OFF); 

[) <; .,,, i r) ? .,source - constraints; 

mailto:jpl.nasa.gov


tranSiliOI1). For tach conflict  type,  negative  contributor, 
there is a set of repair  methods.  The 
search  space  consists of all possible 
repair  methods  applied to all  possible  conflicts in all 
possible  orders. We describe  an  efficient  approach  to 
searching  this  space.  During  iterative  repair, the 
conflicts in the  schedule  are  detected  and  addressed  one  at 
a time until no  conflicts  exist,  or a user-defined  time  limit 
has  been  exceeded. A conflict is a violation of a  parameter 
dependency,  temporal  or  resource  constraint.  Conflicts  can 
be repaired by means of several  predefined  methods. The 
repair  methods  are:  moving an activity,  adding a new 
instance of an  activity,  deleting an activity,  detailing an 
activity,  abstracting an activity,  making a reservation of  an 
activity,  canceling a reservation,  connecting  a  temporal 
constraint,  disconnecting a constraint,  and  changing a 
parameter  value.  The  repair  algorithm  first  selects a 
conflict  to  repair  then  selects  repair  method.  The  type of 
conflict  being  resolved  determines  which  methods  can 
repair  the  conflict.  Depending  on  the  selected  method, the 
algorithm may  need  to make addition  decisions. For 
example,  when  moving an activity, the algorithm  must 
select a new start  time  for the activity. 

Figure 1 shows  an  example  situation for  repair.  On- 
board  RAM is represented as a depletable  resource.  The 
shaded  region  shows a conflict  where the RAM buffer has 
been oversubscribed.  The  science  activities using the 
resource  prior to the  conflict  are  considered  contributors. 
Moving or deleting  one of the  contributors  can  repair  the 
conflict.  Another  possibility  would be to  create a new 
downlink  activity in order  to  replenish  the  resource  and 
repair the conflict. 

integrating Planning and Execution 
Traditionally,  planning  and  scheduling  research  has 
focused on a batch  formulation  of  the  problem. In this 
approach, when addressing  an  ongoing  planning  problem, 
time is divided up  into a number of planning  horizons, 
each of  which lasts for I I  significant  period of  time. When 
one nears the end of  the current  horizon,  one  projects what 
the state will  be at the end  of  the  execution of the  current 
plan  (see  Figure 2). The planner is  invoked  with: a new 

set of goals  for the  new horizon, the expected  initial  state 
for  the new horizon,  and  the  planner  generates a plan  for 
the new  horizon.  As  an  exemplar  of  this  approach,  the 
Remote  Agent  Experiment  operated  in  this  fashion 
(Jonsson et a1 2000). 

This  approach  has a number of drawbacks.  In  this  batch 
oriented  mode,  typically  planning  is  considered  an  off-line 
process which requires  considerable  computational  effort 
and there is a significant  delay from  the  time  the  planner is 
invoked to the time  that  the  planner produces a new  plan.' 
If a negative  event  occurs (e.g., a plan  failure),  the 
response  time until a new plan  may  be  significant.  During 
this period the system  being  controlled must  be  operated 
appropriately  without  planner  guidance.  If a positive  event 

I Ex&ute"  Cycle I 
occurs (e.g., a fortuitous  opportunity,  such  as  activities 
finishing  early),  again  the  response time may be 

' As a data point,  the  planner for the Remote  Agent 
Experiment (RAX) flying  on-board  the  New  Millennium 
Deep  Space  One  mission  (Jonsson et al 2000) takes 
approximately 4 hours to produce a 3 day  operations  plan. 
RAX is running  on a 25 MHz RAD 6000 flight  processor 
and  uses  roughly 25% of the CPU processing  power. 
While  this is a significant  improvement  over  waiting  for 
ground  intervention,  making  the  planning  process  even 
more  responsive (e.g., on a time scale  of  seconds  or  tens  of 
seconds) to changes in the  operations  context,  would 
increase the overall  time  for  which  the  spacecraft  has a 
consistent plan.  As long as a consistent  plan  exists,  the 
spacecraft  can  keep busy working on the  requested  goals 
and hence may  be able to achieve  more  science  goals. 



slgniL‘icant. If the opportunity is short 
lived, the system must he able 1 0  take 
advantage o f  such  opportunities  without 
:I new  plan (because of  the delay i n  
generating a new plan).  Finally,  because 
the planning  process may  need to he 
initiated  significantly  before  the  end of 
the current  planning  horizon, it may  be 
difficult to project  what the state will be 
when  the  current  plan  execution is 
complete. If the  projection is wrong  the 
plan  may have  difficulty. 

To achieve a higher  level of 
responsiveness  in a dynamic  planning 
situation,  we  utilize a continuous 
planning approach  and  have 
implemented a system  called  CASPER 

I r I 

A Goals 

F 

Goals 

’igure 3: Continuous  Planning  Incremental Plan Exte :nsion 

(for  Continuous  Activity  Scheduling _Planning Execution 
and  Replanning).  Rather  than  considering  planning  a  batch 
process  in  which a planner  is  presented  with  goals  and  an 
initial  state,  the  planner  has a current  goal  set, a plan,  a 
current  state,  and a model of the  expected  future  state.  At 
any time an incremental  update  to  the  goals,  current  state, 
or planning  horizon  (at  much  smaller  time  increments  than 
batch  planning)’ may  update  the  current  state of the plan 
and  thereby  invoke  the  planner  process.  This  update may 
be an  unexpected  event or simply  time  progressing 
forward. The planner is then  responsible  for  maintaining  a 
consistent,  satisficing  plan  with  the  most  current 
information.  This  current plan  and  projection is the 
planner’s  estimation as to  what it expects  to  happen in the 
world if things go as expected.  However,  since  things 
rarely go exactly as expected,  the  planner  stands  ready  to 
continually  modify  the  plan.  From  the  point of view of the 
planner,  in  each  cycle  the  following  occurs: 

1. changes to the  goals  and the  initial  state  first posted 
to the  plan, 

2. effects  of  these  changes  are  propagated  through  the 
current  plan  projections  (includes  conflict 
identification) 

3. plan  repair  algorithms’  are  invoked to remove 
conflicts  and  make  the  plan  appropriate  for  the 
current  state  and  goals. 

This  approach  is  shown in below in Figure 3. At  each  step, 
the  plan is created by using  incremental  replanning  from: 

the portion  of  the  old  plan  for  the  current  planning 

the change (A) in the  goals  relevant  for the new 

the  change (A) in the  state;  and 
the  new  (extended)planning  horizon. 

horizon; 

planning  horizon; 

* For the spacecraft control domain we are 
envisaging an  update  rate on the order of tens of 
seconds real time. 

In this  paper  we do not  focus  on  the  state/resource 
representation or the  repair  methods, for details  see 
(Rabideau  et al. 1999). 

This  incremental fast replanning  approach as embodied in 
the CASPER system is being  used i n  a  range of 
applications  (Chien et al. 2000b)  including:  onboard a 
research  prototype  rover,  planned  for  flight  in  several 
space  missions,  ghigh  level  frlight  control  and  weapons 
management in  an Unmanned  Aerial  Vehicle  prototype, 
and Ground  Communication  Station  control. 

CNSR Landed Operations Testbed 
The  CNSR  scenario represents  landed  operations of a 

mission to a comet.  The lander will use a one-meter  long 
drill to collect  samples and then  feed  them to a gas 
chromatograph/mass  spectrometer  onhoard  the  lander. This 
instrument will analyze the composition of the  nucleus 
collected  from  various  depths  below  the  surface. The 
lander will also carry  cameras to photograph  the  comet 
surface.  Additional  instruments  planned onboard the  lander 
to determine  the  chemical  makeup  of  the  cometary  ices  and 
dust will include an infraredkpectrometer  microscope  and 
a  gamma-ray  spectrometer.  After  several days  on  the 
surface,  the  lander will bring a sample  back  to  the  orbiter 
for return to Earth. 

In this test  scenario  the  planner  has  models of 11 state 
and resource  timelines,  including  drill  location,  battery 
power, data buffer, and camera  state.  The model also 
includes 19 activities  such as uplink  data,  move  drill, 
compress  data, take picture, and perform  oven  experiment. 

The nominal  mission  scenario  consists of three  major 
classes of activities:  drilling  and  material  transport, 
instrument  activity  including  imaging  and  in-situ  materials 
experiments, and data  uplink.  Of  these,  drilling  is  the  most 
complex and unpredictable. 

The mission plan calls  for  three  separate  drilling 
activities.  Each  drilling  activity  drills a separate  hole  and 
acquires  samples  at  three  different depths  during the 
process: a surface  sample, a 20 cm.  deep  sample, and a 
one-meter  deep  sample.  Acquiring a sample  involves  five 
separate  “mining”  operations  after the hole  has  been  drilled 
to the desired  depth.  Each  mining  operation  removes 1 cm. 
of material.  Drilling  rate  and  power  are  unknown  a  priori, 



but thew ;IN* wlsonahlc  worst-case  estimates  available. 
lhl l ing C.;III I ; I I I  altogclhcr li)r ;I varlety ofrc;~sons. 

One 01' tllc tllrcc drilling  operations is used to acquire 
m;Itcri;ll lY)r s;ItnpIe-return. The  other two are used t o  
supply Inatcri;1l t o  in-situ  science  experiments  onboard thc 
lander. Thew experiments  involve  depositing the samples 
in an ovcn. and taking datu while  the  sample is heated. 
Between  baking  operations  the  oven  must  cool, but  there 
arc  two ovens, allowing  experiments  to be interleaved 
unless one o f  the ovens fails. 

The  replanning capability was tested  using a stochastic 
version of the CNSR  simulation  described above.  This 
simulation had a number of random  variables, which are 
described  bclow. 

Compression - we model the compression  for 
science  data as a normal  random  variable with a 
mcan of 0.9 and  a  standard  deviation of 0.25*0.9. 
This has the effect of forcing  the  planner to respond 
to  buffer  over-runs (as described  above) and buffer 
under-runs  (to  optimize  the  plan). 
Drilling  Time - we model  the  amount of time  to 
drill  in  minutes as a random  variable  with  mean of 
30 and  standard  deviation of 3. 
Drilling  power - we  model  the  actual  power 
consumption  from  drilling in watts  as  a normal 
random  variable  with  mean 40 and  standard 
deviation 4. 
Oven  Failure - we model  oven  failure  occurrence  as 
Poisson  distributed  with each  oven  having  a 50% 
chance of failure  over  the  entire  mission  horizon. 
Data  Transmission  Rate:  we  model  the  time to 
transmit  data in kilobits  per  second as a normal 
random  variable  with a mean of 100 and a standard 
deviation of 10. This  is intended  to  model  the 
variability in communications  to  the  orbiter. 
Oven  Warming and Cooling  Times: we model the 
amount of time to heat  up  the  sample  and  for the 

result i n  conflicts t h a t  should be handled by thc 
pl;lnnor/sclleduler. 

I n  order gain  insight i n t o  the effectiveness of  the local 
search i n  replanning, we cxmnine the number  of plan 
operations and CPU time t o  either  repair the current plan or 
t o  construct ;I new  plan to reflect the rcal-time  execution 
fcctlback. Table 0 shows the average  number of CPU 
seconds  and plan modifications  required  to  repair  the 
existing old plan  and construct a new  plan  from  scratch. 
This  data  clearly  shows that it is more  efficient to re-use 
the  old  plan  than to construct a plan from  scratch. 

We  also briefly present  results in a rover  operations 
domain  (space  constraints  preclude  a  more  lengthy 
presentation of these results). Table 4 and 5 show  the  CPU 
seconds required to  generate  a  new  plan  from  scratch 
versus by modifying the  old plan.. Unfortunately we do 
not  yet have plan operations  statistics  (only CPU seconds); 
we  hope to  have  such  statistics by the  time of the  camera- 
ready paper. 

Tables 1 shows for the CNSR  simulations, a histogram 
plot which  indicates the frequency  with  which  problems 
from  feedback  required  a  given  number of plan  operations 
to repair (Le. the height of  the column  in  the Y- dimension 
indicates  the  frequency of problems  requiring  the  number 
of repair  operations  indicated on the X axis.  Table 2 
shows a similar plot for the CPU  Time for the  CNSR 
scenario.  These  plots  indicate  that a large  number of 
solutions to the replanning  problem lie in  the  neighborhood 
of the  old plan.  This  validates our hypothesis  that if the 
Agoals and Astate are  small, that the  Aplan  should  also  be 
small.  Additionally  the  histograms  clearly show  that 
replanning  from  the old plan is more  efficient  than batch 
planning  from  scratch. 

Average 

Remir Batch  Repair  Batch 

CPU Average  Planning 
Iterations  Seconds 
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Table 3: Rover Scenario,  Time, In aconds  

Table 3 shows  the  histogram plot  for  the CPU  time 
required to repair  the  old  plan  vs.  constructing a new  plan 
from  scratch.  Again  the  data  indicates  that  not  only are a 
large  number of solutions  quite  close  to  the old plan  but 
that  re-using  the  old  plan  is  significantly  more  efficient  that 
replanning  from  scratch. 

Related Work 
The  question  of  repairability that this paper  addresses is 

strongly  linked  to  the  notion  of  supermodels  (Ginsberg & 
Parkes 1998).  In  supermodels,  they  examine  the  problem 
of finding a (m,n)  SAT  model  which  after  having m bits 
flipped,  can  be  made  consistent by flipping a different  n 
bits. They  show  that  for  specific  classes of problems  this 
can  be  reduced to a SAT problem. In contrast, we are 
interested in finding a plan  that  after  being  perturbed by 
real-world  feedback  (corresponding to the m bits  flipped 
above) that  using a bounded  amount of computation  (n  bits 
flipped in response  above)  can  be  repaired to be consistent 
(be  made a consistent SAT model).  Because our 
perturbation  space is much  more rich (stochastic  elements 
for  states,  resource  usage,  and  activity  duration)  and our 
plan  repair  space  more  rich  (add,  move,  delete,  abstract 
activities)  the  problems  are  alike only at the most  abstract 
level. However, the  general  approach of trying to generate 
robust  plans is exactly  the  problem of interest and  the study 
in this  paper is aimed  at  evaluating the ability of local 
search  to  repair plans. 

_ .  1 he high-spccci local search  techniques used i n  our 
continuous planner prototype arc ;1n cvolul iot l  0 1  those 
dcvclopcd l o r  the DCAPS system (Chien ct a l .  1999) that 
I1xs proven robust in  x t u d  applications. I n  terms of 
related work, iterative algorithms have hccn ;lpplicJ to a 
widc  range of' computer  science  problems such ;IS traveling 
salesman  (Lin & Kernighun  1973) as well as Artificial 
Intelligence  Planning  (Biefeld & Cooper 1991, Chien & 
DeJong  1994,  Zweben et al. 1994,  Hammond  1989, 
Sussman  1973).  Iterative  repair  algorithms  have  also been 
used for a number of scheduling  systems.  The  GERRY 
system  (Zweben  et  al.  1994)  uses  iterative  repair  with a 
global  evaluation  function  and  simulated  annealing to 
schedule  space  shuttle  ground  processing  activities. The 
Operations  Mission  Planner (OMP)  (Biefeld & Cooper 
1991)  system used iterative  repair in combination  with a 
historical model  of the  scheduler  actions  (called 
chronologies) to avoid cycling and  getting  caught  in  local 
minima.  Work by Johnston  and  Minton  (Johnston & 
Minton  1994)  shows  how  the  min-conflicts  heuristic can  be 
used  not only for scheduling but also  for  a  wide  range of 
constraint  satisfaction  problems. 

The  OPIS system  (Smith 1994) can  also  be  viewed as 
performing iterative repair.  However, OPIS is  more 
informed in the application of its  repair  methods  in  that it 
applies  a  set of analysis  measures to classify  the  bottleneck 
before  selecting a repair  method.  Excalibur  (Narayek, 
1998)  represents a general  framework  for  using  constraints 
to unify planning  and  scheduling  constraints,  uncertainty, 
and knowledge. This  framework is consistent  with  the 
CASPER  design,  however in this  paper we have  focused 
on a lower-level.  Specifically, we have  focused  on  re- 
using the current  plan  using  iterative  repair  and  specific 
locking  mechanisms to avoid  race  conditions. 

Work  on the PRODIGY  system  (Cox & Veloso  1998) 
has indicated how goals may be  altered due  to 
environmental  changedfeedback.  These  changes would be 
modeled in our framework via task  abstractionhetraction 
and decomposition for  potentially  failing  activities.  Other 
PRODIGY work (Veloso,  Pollack, & Cox  1998) has 
focused on determining  which  elements of the  world  state 
need to be monitored  because  they  affect  plan 
appropriateness. In our  approach we have  not  encountered 
this bottleneck, our fast  state  projection  techniques  enable 
us to detect  relevant  changes by noting  the  introduction of 
conflicts  into the plan. 

Work on CPEF  (Continuous  Planning  and  Execution 
Framework)  (Myers  1998)  uses  PRS,  AP,  and  SIPE-2, also 
represents a similar  framework  to  integrating  planning  and 
execution.  CPEF  and  CASPER  differ in a number  of 
ways. First, CPEF  attempts to cull out key aspects  of the 
world to monitor (as is necessary in general  open-world 
domains).  They  also  suggest  the use of  iterative  repair 
(they use the term conservative  repairs).  And  their 
taxonomy of failure types  is  very  similar to ours in terms 
of' action  failure and re-expansion of task  networks  (re- 



[lccc)rnllosltic)ll). Howe\er.  I n  this paper we have  locusecl 
on lower Icwl  issucs i n  synchronization and timing. 

Conclusions 
This paper 11as tlcscrihed an empirical  evaluation of a 

local search  approach to integrating  planning and 
execution for spacecraft  control  and  operations. In this 
empirical  study we investigated the hypothesis that small 
perturbations in execution of a plan would  be resolvable in 
an efficient  fashion by local search.  Empirical  evidence 
from  two  space  mission  simulations  supports the  use  of 
local search for  this  type of problem. 
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